37. If abc = 1, then $${\frac{1}{{1 + a + {b^{ - 1}}}} + }$$ $${\frac{1}{{1 + b + {c^{ - 1}}}} + }$$ $${\frac{1}{{1 + c + {a^{ - 1}}}}}$$ = ?
40. Let $$a = \frac{1}{{2 - \sqrt 3 }} + \frac{1}{{3 - \sqrt 8 }} + \frac{1}{{4 - \sqrt {15} }}$$ then we have
41. Which of the following statement(s) is/are TRUE?
$$\eqalign{ & {\text{I}}.\sqrt {12} > \root 3 \of {16} > \root 4 \of {24} \cr & {\text{II}}.\root 3 \of {25} > \root 4 \of {32} > \root 6 \of {48} \cr & {\text{III}}.\root 4 \of 9 > \root 3 \of {15} > \root 6 \of {24} \cr} $$
$$\eqalign{ & {\text{I}}.\sqrt {12} > \root 3 \of {16} > \root 4 \of {24} \cr & {\text{II}}.\root 3 \of {25} > \root 4 \of {32} > \root 6 \of {48} \cr & {\text{III}}.\root 4 \of 9 > \root 3 \of {15} > \root 6 \of {24} \cr} $$
Page 6 of 29