449. If $$a - \frac{1}{{a - 3}} = 5{\text{,}}$$ then the value of $${\left( {a - 3} \right)^3}$$ - $$\frac{1}{{{{\left( {a - 3} \right)}^3}}} = ?$$
450. If $$x + \frac{1}{x} = 5{\text{,}}$$ then the value of $$\frac{{5x}}{{{x^2} + 5x + 1}}$$ is?
451. If $${\left( {x + \frac{1}{x}} \right)^2} = 3{\text{,}}$$ then the value of (x72 + x66 + x54 + x24 + x6 + 1) is?
452. If $$x + \frac{1}{x} = 1{\text{,}}$$ then the value of $$\frac{{{x^2} + 3x + 1}}{{{x^2} + 7x + 1}}$$ is?
453. If x2 - 3x + 1 = 0, then the value of $$\frac{{\left( {{x^4} + \frac{1}{{{x^2}}}} \right)}}{{\left( {{x^2} + 5x + 1} \right)}}$$ is:
454. Simplified value of $$\left[ {\,\left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right)\,\left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right)\,\, - \,\,\left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right)\,\left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right)\,} \right]$$ $$ ÷ $$ $$\left[ {\,\left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right)\,\, + \,\,\left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right)\,} \right]$$ = ?
455. Find the value of a and b if (x - 1) and (x + 1) are factors of x4 + ax3 - 3x2 + 2x + b = ?
Page 65 of 79